
 

  
Abstract— we study the period function of the quadratic 

Lienard equation of a certain type in order to give necessary and 

sufficient conditions for monotonicity and isochronicty of the 

period function. We apply this result to identify the region of 

monotonicity of the period function of particular cases.  
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I. INTRODUCTION 

N this paper we study the monotonicity property of the period 

function of   the quadratic Lienard equation of the type 

0)()()( 2 =+′+′+′′ xhxxgxxfx ……….  (1) 

We shall look for an appropriate equivalent differential system 

such that the required computations can be actually performed. 

This equivalent differential system is of the form 

2)()()(

)()(

yxbyxaxcy

xyxbxxayx

−−−=′

−−=′
 ……………. (2) 

where ,, ba and c are functions of class 
1C defined on an 

open neighborhood I of the origin. 

A singular point of system (2) is called a center if there is a 

deleted neighborhood of the point which consists entirely of 

closed trajectories surrounding that point. We say that 

equation (1) has a center if any one of the equivalent systems, 

and then all, has a center. If system (2) has a center at the 

originO , we call 0U  the largest open connected region 

covered with cycles surroundingO . Define a 

function RUP →0: , by associating to every 0),( Uyx ∈  

the minimal period of the cycle passing through ),( yx . P  is 

called the period function ofO . The period function has been 

extensively studied by number of different authors see [1], [2], 

[3], [5], [7], [8], and references therein. Let N  be an invariant 

connected subset of
0U . We say that P is increasing (strictly 

increasing) in N if, for every couple of cycles N∈21 , δδ , 

with 
1δ contained in the interior of

2δ , we have 

 
 

  
 

)()( 21 δδ PP ≤ ( )()( 21 δδ PP < ). We say that O is an 

isochronous center if P is constant in a neighborhood ofO . 

The general approach of the article has been introduced before 

by Marco Sabatini in his work with the case 0)( =xf , and 

accordingly with a different planar system, see [6]. 

Since we are applying Theorem 1 of Sabatini [6] in our work, 

and for the sake of competence, we state that Theorem here.  

Theorem 1 of [6]: let (2) have a center atO . Assume that 

there exist a star-shaped set 
2R⊂∆  such that 0),( ≠θω r  

for all Pr ∆∈),( θ , then 

1) If there exists a zero-measure set )2,0[ π⊂Z  such that, 

for all Z\)2,0[ πθ ∈ , the function ),( θω rr →  is 

increasing (decreasing) in ))(,0( θ∆r , then P is decreasing 

(increasing) in ∆N ; 

2) If point 1) holds, and for every orbit δ in a neighborhood 

V of O  there exists a point δθδδ ∈),(r  such that 

),( δθω rr →  is strictly increasing (strictly decreasing) 

at δr , then P is strictly decreasing (strictly increasing) in ∆N ; 

3) If there exists a zero-measure set )2,0[ π⊂Z , such that, 

for all Z\)2,0[ πθ ∈ , then ),( θω rr → is constant 

in ))(,0( θ∆r , then P is constant in ∆N . 

 

),(0 RIC defined as follows: 
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Where   

∫ ∫==
x x

sF dsexdssgxF
0 0

)( ,)(,)()( β  

∫=
x

sF dsessfx
0

)()()(γ ,    

              )()( xxe xF β−=     By integrating by parts 

 

∫=Ω
−

=
x

dssbsQx
xxb

xQ
0

)()()(,
)(1

1
)(    and  

∫ Ω=
x

sF dsesssgx
0

)()()()(δ . 

 

The following Lemmas are stated without proofs since the 

details of the proofs are long, we skip it and can be sent on a 

request. 

 

Lemma 1. 

If ,),,(0 RIRICf ⊆∈  then  b  is continuous, and  

if ),,(1 RICf ∈ then  

6

)0()0(2
)0(),,(

2
1 ff

bRICb
−′

=′∈ . 

 

Lemma 2. 

If ,),,(, 0 RIRICgf ⊆∈  then  a  is continuous, and  

if ,),,( 11 CfRICg ∈∈  then  

3

)0(
)0(),,(1 g

aRICa
′

=′∈ . 

Lemma 3.  

Let ),,(,, 0 RIChgf ∈ then the function, 

)]()()()[()( 2 xQxxaxhxQxc −=  

is continuous, and if
123 ,, ChCgCf ∈∈∈ ,  

then   
1Cc ∈  and ).0()0(,0)0()0( hchc ′=′==  

 

Lemma 4. 

,0)( >xQ  for every Rx ∈ . 

 

Utilizing these Lemmas, one can prove the next Lemma. Since  

Lemma 5. 

If 0)0(),,(,, 1 =∈ hRIChgf , then system (2) is of 

class 
1C  in a neighborhood of the origin and equivalent to the 

equation (1). 

 

II. THE MAIN RESULTS 

In order to state the first theorem, we define the following 

function σ as: 

)()(4)()]()(2

)()([)()()()()(

2244

443

xQxaxxQxxaxg

xhxbxhxfxxhxxhxx

−+

+−′−=σ
 

Theorem 1. 

If 0)0()0(),,(,, 1 ==∈ hgRIChgf . Let the 

origin be a center of (1). If  0)( >xxc  for  ,0Ix ∈  and: 

1) )0)((0)( ≥≤ xx σσ   for Ix ∈ , then P is decreasing 

(increasing) in IU ; 

2) Iinx 0)( ≡σ , Then  P  is constant in  IU  . 

Proof.   

The angular speed of (2) has the form 
22

2)(

yx

yxxc

+

−−
.   

Since 0)( >xxc  for 0Ix ∈ , then the angular speed is 

negative in 0I . In polar coordinates, for almost all values 

of, ∈θ [ )π2,0  namely
2

3
2
, ππθ ≠ , the angular speed is 

θ
θθ

θωθ 2

2
sin

)cos(cos
),( −−==′

r

rc
r  

Hence 

2

2 )cos(cos)cos(cos

r

rcrcr

r

θθθθω −′
=

∂
∂

−  

             
2

3

)(

)()(

22

2

yx

xxcxcx

+

−′
=  

This yield 

)(
)(

)()(
2

2 x
x

xQ
xxcxcx σ−=−′  

Therefore 

).(
)(

2
x

x

xQ
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=

∂
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Since  0),( <θω r  for 0)sin,cos( Irr ∈θθ , 

then ),(),( θωθω rr −= , so 

)(
)(

)(),((

2

3
222

x
yxx

xQ

r

r
σ
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+

−
=

∂
∂

 

From Lemma 4, we have 0)( >xQ  for all x , hence if 

0)( ≤xσ  then 0
),(

≥
∂

∂

r

r θω
, and consequently, the 

function ),( θω rr →  is increasing. Then applying 

Theorem 1 of [6] completes the proof. 

 

Theorem 2. 

If the origin of system (1) is center, 

and 0)0()0(),,(,, 1 ==∈ hgRIChgf , 0)( >xxc  
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for  ,0Ix ∈  and  )0)((0)( ≥≤ xx σσ   for Ix ∈ , and 

there exists a sequence 0, →∈ nn xIx with 

)0)((0)( >< nn xx σσ   , then P  is strictly decreasing 

(strictly increasing) in
IU . 

Proof. 

Let Λ  be a cycle of the system (2) contained in IW . Then Λ  

meets the line nxx =  at some points ),( nn yx  

corresponding to ),( nnr θ  in polar coordinates.  

Since )0)((0)( >< nn xx σσ , we have, from the detailed 

computation in the proof of Theorem 1, that 

)(0
),(

<>
∂

∂

r

r θω
 at ),( nnr θ .  Then applying Theorem 1 

of [6] completes the proof. 

 

Corollary 1. 

If the origin of system (1) is center, 

and 0)0()0(),,(,, 1 ==∈ hgRIChgf , 

and 0)0( >′h . Then the statement of the Theorem holds in a 

suitable subinterval of I . 

 

Remark 1.  

With some computation one can find 

]
)(

[
)(

)(
4

5

′=
x

x

xQ

x
x

τ
σ  

where 

xhxhxQxxQxaxx )0()()()()()( 3224 ′+−=τ  

 

Corollary 2. 

Let 0)0()0(),,(,, 1 ==∈ hgRIChgf , 0)0( >′h ,

0)( ≡xτ , then the origin is the unique singular point of 

system (2). 

 

Define a function )(xµ as, 





=

≠′+−
=

00

0),0()()()(
)(

)(22

x

xgxQxQxa
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Lemma 6. 

1) For 0≠x , )()()( 1 xcxhx
x

−′=µ . 

2) If ),,(,, 2 RIChgf ∈ then ),()( 1 RICx ∈µ . 

 

Theorem 3. 

Let the origin be a center,  hgf ,,  be odd analytic 

functions on ),( ηη−  for some 0>η , and 0)( >xxc  

for 0≠x , then  

1) P is strictly decreasing (strictly increasing) at the origin 

if and only of )(xτ  has a proper maximum (Proper 

minimum) at the origin. 

2) The origin is an isochronous center if and only if 

0)( ≡xτ  in a neighborhood of the origin. 

Proof. 

We have )(
)(

)(
5

x
xQ

x
x µσ ′= , and 0)( >xQ  for all x, 

then 0)( >xσ , if and only if 0)( >′ xxµ . On the other 

hand, we have )()( 4 xxx µτ =  , then 0)( >xτ  if and 

only if 0)( >xµ .  In fact, σµ,  are even analytic 

functions, then the origin is either proper minimum of σ  , 

or it is proper maximum, or is identically zero. By Theorem 

2, P  is strictly increasing, strictly decreasing, or constant, 

respectively.  Vice –versa, if P  is strictly increasing, then 

σ  cannot be constant, otherwise, by Theorem 2, the center 

would be isochronous. Moreover, if P   is strictly 

increasing, then σ  cannot have a proper maximum at0 , 

that would imply P  to be strictly decreasing by Theorem 2. 

Hence, if P  is strictly increasing, then σ  has a proper 

minimum. The other cases can be treated similarly. 

Therefore, P  is strictly increasing at 0 (strictly decreasing 

at0 , constant), if and only if, )(xσ  has a proper minimum 

at 0 (has a proper maximum at0 , constant). 

Now we shall show that σ  has a proper maximum at 

0 (has a proper minimum at0 , constant) if and only if 

τ has a proper maximum at 0 (has a proper minimum at0 , 

constant) as follows: 

Since τ  is even, analytic and 0)0()0( == µτ , then there 

are only three possibilities for τ  can occur in a 

neighborhood of 0  :  A proper maximum at0 , a proper 

minimum at0 , or identically zero. If 0 is a proper 

minimum ofσ , then 0)()( >′= xxx µσ  for 

small 0≠x , that is, also τ  has a proper minimum at0 . 

Similarly we can prove that if 0 is a proper maximum 

ofσ , and then 0  is proper maximum ofτ .  If 0)( ≡xσ , 

then 0)( ≡′ xµ , hence 0)( ≡xµ , and 0)( ≡xτ . Vice-

versa, if τ  has a proper minimum at0 , then by what 

above, σ cannot have a proper maximum, nor be constant, 

hence it has a proper minimum at0 . The other cases follow 

similarly. The proof completes. 

 

Corollary 3. 

Let the origin be a center,  hgf ,,  be odd analytic   

functions on ),( ηη−  for some 0>η , and 0)( >xxc  

for 0≠x , then  

1) P is strictly decreasing (strictly increasing) in IN  if 

and only of )(xσ  has a maximum at the origin. 

2)  P  is constant in
IN , if and only if 0)( ≡xσ .  
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Now we consider the equation (1) with linear restoring 

term, 

0)()( 2 =+′+′+′′ xxxgxxfx ………. (3) 

This equation with the case 0)( ≡xf , has been considered 

in [4], means the Lienard equation with linear restoring term, 

0)( =+′+′′ xxxgx ……….. (4) 

where its monotonicity at the origin is proved by computing 

the constant period function. In [6], the author provides an 

estimate of the region of monotonicity of  P  for the equation 

(4).  The next Corollary provides an estimate of the region of 

monotonicity of  P  but with 0)( ≠xf , means the equation 

(3). 

Corollary 4. 

Let the origin be a center of (3). If ,, gf are 

analytic, 0)( ≠xg  then P  is strictly increasing in IN , 

where { }0)()(1:inf),,( 2 >−−== xaxxbxI αβα ,

{ }0)()(1:sup 2 >−−= xaxxbxβ . 

III. EXAMPLE 

The following is an example exhibiting an application of the 

work for equations with linear restoring term of a Rayleigh 

equation type of the form 

03 =+′+′+′′ xxmxnx  

where  0, ≠mn  constant to be determent and accordingly 

find out the interval I containing the origin on which the 

period function  P  is increasing.  Consider the slandered 

system 

3

,

mynyxy

yx

−−−=′

=′
 

This system has a unique singular point (0, 0). 

Exchanging variables and multiplying the vector field by -1, 

the system becomes 

 

xy

mxnxyx

−=′

++=′ ,3

 

This is a system of the type of equation (1) with  
23)(,0)(,)( mxnxgxfxxh −−=≡=  

As a consequence of eigenvalue analysis, the origin is a center 

if 2<n .  

Now, we apply Corollary 4.  

Since 0)( =xf , then 0)( ≡xF . 

Therefore 1)(,0)( == xQxb . Hence 

2

4

3

2
)( mx

n
xa −−=  

As a consequence of Corollary 4, P  is strictly increasing in 

IN  , ),( βα=I   













>






 −−−= 0
3

4

2
1:inf

2

2mx
n

xα , 













>






 −−−= 0
3

4

2
1:sup

2

2mx
n

xβ  

But   0)(1
22

3
4

2
>−−− mxn , is equivalent 

to 12

3
4

2
<+ mxn . Then  

m

n
x

m

n

3

24

3

24 2 −
<<

−−
 

So, if 0<m , then there is on interval on which  P  is 

increasing. This means that the system has no increasing 

period function. If 0>m , then  P  is increasing on the set of 

cycles contained in the vertical strip ),( yx defined by the 

inequality 2,0,
24

<>
−

< nm
m

n
x . 
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